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a b s t r a c t

In this paper, we analyze the effects of vaccination from a spatial perspective. We
propose a spatial deterministic SIRS–V model, which considers a non-linear system of
partial differential equations with explicit attrition and diffusion terms for the vacci-
nation process. The model allows us to simulate numerically the spatial and temporal
dynamics of an epidemic, considering different spatial strategies for the vaccination
policy. In particular, in our first example we analyze the classical SIRS–V evolution
with the addition of movements due to diffusion, while in the second one we focus
on modeling one ring vaccination policy. We expect this model can improve spatial
predictions of SIR vaccination models by taking into account the spatial dimension of
the problem.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Since the seminal work of Kermack and Mckendrick in 1927 [1], differential equations have been widely used to model
the dynamics of infectious diseases. Currently, a large number of more sophisticated mathematical models of this family
have been used to evaluate epidemics spreading, and also to formulate public health policies such as: vaccination policies,
usage of face masks, quarantine, avoidance of crowded places, and so on, see for example [2–5] for reviews, and [6–8] for
recent developments.

One of the main disadvantages of the SIR model is that it does not take into account the spatial dimension of the
problem. Indeed, it is quite obvious that infected people have more impact on the healthy people around them. Thus,
generally, for more densely populated areas it is going to take less time for a disease to spread across the region. In the
same line, SIR models do not consider the possibility that populations usually relocate themselves. In this context, despite
the mathematical and computational complexity of modeling epidemic dynamics in spatial settings, the potential of these
tools could be very important from a policy point of view, especially considering current human mobility, see [9].

Recently, there has been growing interest in studying the spatial and temporal dynamics of infected populations,
see [10–12]. In essence, classical models have been extended to reaction–diffusion equations in order to model the rate
of spatial spread [4,13,14]. One of the first investigations on the spatial propagation of a disease was presented by [15].
In this paper, a reaction–diffusion equation model was developed to determine the propagation of rabies among foxes.
Later, more sophisticated models were developed by Professor Murray on the same problem, see [16,17]. [10] proposed
a spatial model to analyze the propagation of West Nile Virus across USA, from east to west. This model studied the
propagation of the virus based on a system of partial differential reaction–diffusion equations taking the mosquito and the
avian populations into account. Diffusion and advection movements were allowed for both populations, and the traveling
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wave solutions of the model were analyzed to determine the speed of disease dissemination. From a more technical point
of view, the study of traveling wave solutions of delayed reaction–diffusion equations has been a fertile avenue for the
development of spatio-temporal dynamics of infected populations [12,18–22].

On the policy side, vaccination has been one of the most successful public health policies in history. Significant
reductions in mortality and morbidity have been achieved via vaccination against many diseases. Furthermore, current
levels of vaccination are likely to be maintained or even increased in the future [23,24]. In this context, mathematical
models are key tools for evaluating alternative vaccination strategies, since they can generate predictions for comparing
different strategies which can inform changes in national policy. So far, mathematical modeling has made important
contributions to the understanding of the impact of vaccination programs and their designs, see for example [25–30].

Indeed, simple models can forecast vaccination coverage that will eventually help to eradicate an infectious disease.
Nevertheless, in practice, the simple SIRS–V model is too naive to capture the full complexity of human populations and
their interactions. For example, it is well known that human mixing is assortative, and hence the spread of infection is
more likely to occur between individuals of a similar age. In this context, vaccination modeling efforts need to account
for a variety of age-related effects in order to be more realistic [27,28,31]. Thus, more sophisticated and realistic analysis
requires more complex modeling approaches, considering for instance, the space and time dimensions mentioned above.

Most childhood vaccines give lifelong protection, hence the policy recommendation is always to vaccinate early in life.
However, when the protection offered by the vaccine is short lived, it is more efficient to target the vaccine at individuals
that are most at risk. In this context, vaccination is also used to reduce the likelihood of disease outbreaks. Such reactive
vaccination strategies can reduce the need of other less efficient intervention strategies. In order for vaccination policies
to be effective during an outbreak, they need to be targeted in such a way that they can create a barrier between the
infected individuals and the susceptible population. From a policy point of view, in this case it is clear that we need to
formulate a spatial vaccination strategy in order to be more effective and efficient [28,32].

Indeed, outbreaks of a new disease tend to occur in spatial clusters, see for example [33] for foot and mouth disease
epidemics, and [34] for Ebola virus outbreak in West Africa. Thus in order to model the dynamics of the disease, spatial
waves of infection must be modeled, see for example [32]. In these circumstances, ring vaccination has often been shown
to be an effective strategy. This strategy consists of the vaccination of all susceptible individuals in a prescribed area around
an outbreak of an infectious disease. The idea is to form a buffer of immune individuals to prevent further spreading of the
disease outside the vaccinated area. Ring vaccination was used to control smallpox and it has been also used successfully
as a disease-control strategy, for example, to contain foot-and-mouth disease in livestock in the UK, see [35]. In this
specific problem, the definition of the vaccination radius and its location are the key policy questions. Thus, in the limit, if
no infected individuals escape from the ring, the infection will die out. Consequently, if the vaccination radius is too small
the policy will be ineffective. On the other hand, in practical terms, to have a vaccination ring as large as possible, could
be impossible from a logistic or economic point of view. Summing up, the optimal size of the vaccination ring depends
upon the spatial spread of the outbreak and the speed of introduction of the vaccination campaign.

The main purpose of this paper is to study the effects of vaccination from a spatial perspective. We propose a spatial
deterministic SIRS–V model, which considers a non-linear system of partial differential equations with explicit attrition
and diffusion terms for the vaccination process. The model allows us to simulate numerically the spatial and temporal
dynamics of an epidemic, considering different spatial strategies for the vaccination policy. In particular, in our first
example we analyze the classical SIRS–V evolution with the addition of movements due to diffusion, while in the second
one we focus on modeling one ring vaccination policy.

It is important to point out that without a spatial approach it is almost impossible to model the effectiveness of
heterogeneous vaccination policies, a crucial matter given the scarcity of resources and the logistic restriction of universal
vaccination in short periods of time. Thus, we expect this model could improve spatial predictions of SIRS–V models on
vaccinations taking into account the spatial dimension of the problem. Furthermore, the possibility to simulate different
spatial vaccination policies and compare the impact of each one in the territory could be a very important avenue for future
research. Finally, since, this is one of the first modeling efforts in this direction, we expect this model could motivate more
research in this line of work.

The rest of this paper is organized as follows. In the next section, a general formulation of the new model and its
equations are presented. In Section 3, the solution of the resulting linear PDE system is numerically developed using the
Crank–Nicolson Method. Two simulation examples are developed, which explore the model capabilities for studying local
behavioral response to an epidemic crisis, in a spatial setting. Finally, the findings are summarized, and directions for
future research are discussed.

2. Model description

In this section, we revise the basic SIRS–V model and notation. Later we introduce our basic spatial SIR model, and the
modeling of responsive local movement and perception of population.
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Fig. 2.1. The basic SIRS–V model.

2.1. The basic SIRS–V model

[1] in their model categorized the population as Susceptible (healthy but exposed to the disease), Infected, and
Recovered. Thus, the model is usually called Susceptible–Infected–Recovered–Susceptible–Vaccinated (SIRS–V) model.
We consider a basic SIRS–V model without demographics (no births, deaths and only in-bounds migration, with total
population P , constant). The typical scenario here is a large naive population into which an infectious group is introduced,
resulting in a fast epidemic process. This model also assumes homogeneous mixing, and that underlying epidemiological
probabilities are constant. In this simple model, we also consider vaccination of susceptible individuals and assume that
the vaccinated individuals are permanently immunized. Thus, we get the following SIRS–V equations:

∂S
∂t

= −βSI − ρS + αR, (2.1)

∂ I
∂t

= βSI − γ I, (2.2)

∂R
∂t

= γ I − αR, (2.3)

∂V
∂t

= ρS, (2.4)

where, βSI is known as the transmission term, γ is the recovery rate, and its reciprocal represents the average infectious
period. Vaccination of susceptible individuals is performed at a constant rate ρ > 0. α is the rate of recovered population
becoming susceptible. In our model S+ I+R+V = P , and hence with S and I , it is possible to calculate R. These equations
have initial conditions S(0) > 0, I(0) > 0 and usually R(0) = 0 and V (0) = 0. The model representation is shown in 2.1,
see [36] for an application of this model.

2.2. The spatial SIRS–V model

The spatial SIRS–V model uses a spatial coordinates system for the population being considered, typically four:
the susceptible group, the infected group, the recovered group and the vaccinated group. Without loss of generality,
the surface densities of the susceptible, infected, recovered, and vaccinated will be represented by S (x, y, t), I (x, y, t),
R (x, y, t), and V (x, y, t) respectively. In the spirit of [37], each population will have an instantaneous velocity given
respectively by v⃗S (x, y, t), v⃗I (x, y, t), v⃗R (x, y, t) and v⃗V (x, y, t), so the density of the flow, the amount of population per
unit time that pass through a unit area, are J⃗S (x, y, t) = S (x, y, t) v⃗S (x, y, t), J⃗I (x, y, t) = I (x, y, t) v⃗I (x, y, t), J⃗R (x, y, t) =

R (x, y, t) v⃗R (x, y, t) and J⃗V (x, y, t) = V (x, y, t) v⃗V (x, y, t). In addition, the net internal generation of population is defined
by GS , GI , GR and GV , respectively. It should be highlighted that the surface densities S, I , R and V must be non-negatively
valued functions.

Regarding the definitions presented above, the imposition of the balance of population (continuity) to the spatial
dynamic of the epidemic leads to:

Gθ − ∇⃗ · J⃗θ = Gθ −
∂ Jθx
∂x

−
∂ Jθy
∂y

=
∂θ

∂t
, (2.5)

where θ can be S, I , R or V .
It remains clear that J⃗θ = θ ·v⃗θ , where v⃗θ is the instantaneous velocity of each part of the respective moving population,

and θ is the density of the respective population.
In general, the internal densities can be expressed considering the profile of the population through the SIRS–V

power-series expansion:

GS = gS (x, y, t) −

∞∑
i=0

⎧⎨⎩
⎛⎝ ∞∑

j=0

βijS iI j

⎞⎠ + ρiS i − αiRi

⎫⎬⎭ , (2.6)
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GI = gI (x, y, t) +

∞∑
i=0

⎧⎨⎩
⎛⎝ ∞∑

j=0

βijS iI j

⎞⎠ − γiI i

⎫⎬⎭ . (2.7)

GR = gR (x, y, t) +

∞∑
j=0

(
γiI i − αiRi) . (2.8)

GV = gV (x, y, t) +

∞∑
i=0

ρiS i . (2.9)

where the αi, βij, γi and ρi coefficients are implicitly space–time dependent.
Thus, the general approach to model spatially the SIR equations can be written generically as:

−∇⃗ · (θ v⃗θ ) =
∂θ

∂t
− Gθ (2.10)

Finally, the total number of individuals of each kind in the domain Σ , during the epidemic at any time can be found
using the following expression:

θT =

∫∫
Σ

θ (x, y, t) dσ (2.11)

for example, for the susceptible population segment, we have

ST (t) =

∫∫
Σ

S (x, y, t) dσ . (2.12)

Nevertheless, in order to complete the formulation, the motion behavior of the population must be described. In
some cases explicitly through the velocities, but in other cases implicitly through the densities of the flow. The analysis
performed in the next sections illustrate better this matter, specifically some particular assumptions are discussed.

2.3. Modeling responsive local movement and perception

As we discussed above, the spread of an epidemic can trigger behavioral responses of people trying to prevent
themselves from catching the disease. One of the most basic preventive measures of people is to avoid infected people,
either by retreating or by pushing away their health threats. We refer to this type of movement as responsive movement.
Assuming that the density of the flow of populations will be related to the balance of each population, two simple
possibilities should be kept in mind as main drivers of the populations (not the only ones): linear behavior of the velocities,
and, linear and non-linear behavior of the densities of current.

The way a population reacts during the epidemic may vary widely depending on context and the type of population
involved. Moreover, perception of the infection risk can be very different if individuals consider their own probability of
infection or that of other individuals, such as family members. Lack of information means that large assumptions have
to be made about people’s behavior, but differing reactions in reality, both between individuals and through time, mean
these assumptions may be highly unreliable; for example, reactions to an outbreak may be non-linear.

Sixteen parameters can be introduced here which account for a combined effect of the perception and risk of contagion
of each population group. The first subscript indicates the observer and the second subscript indicates the subject of the
observation, e.g.: hSI is the result of such a combined effect of risk of contagion by the infected group, as perceived by the
susceptible group. In order to separate both effects, it is useful to define the actual contagion risk of each group: kS , kI ,
kV and kR are assumed to be constants for this case, even though they could be time and terrain dependent, so sixteen
pure parameters (uij) define just perception (in general they can be time and space dependent), and they are defined as
follows:⎡⎢⎣hSS hSI

hIS hII
hRS hRI
hVS hVI

hSR hSV
hIR hIV
hRR hRV
hVR hVV

⎤⎥⎦ =

⎡⎢⎣kSuSS kIuSI kRuSR kVuSV
kSuIS kIuII kRuIR kVuIV
kSuRS kIuRI kRuRR kVuRV
kSuVS kIuVI kRuVR kVuVV

⎤⎥⎦ (2.13)

As a rule of thumb, hij = kjuij.
The group of population located at some position will move towards or away from the other population according to

the perceived contagion risk of the other.

J⃗S = −pS
(
hSS∇

2S − hSI∇
2I − hSR∇

2R − hSV∇
2V

)
(2.14)

J⃗I = −pI
(
hII∇

2I − hIS∇
2S − hIR∇

2R − hIV∇
2V

)
(2.15)

J⃗R = −pR
(
hRR∇

2R − hRS∇
2S − hRI∇

2I − hRV∇
2V

)
(2.16)
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J⃗V = −pV
(
hVV∇

2R − hVS∇
2S − hVI∇

2I − hVV∇
2V

)
(2.17)

where pS , pI , pR and pV are proportionality constants.
By replacing Eq. (2.15) into Eq. (2.5), and proceeding in the same way for the other forces, the densities of current no

longer appear in the equations, leaving the problem with a resemblance to the classic Poisson equation in terms of the B
and R force densities:

pS
(
hSS∇

2S − hSI∇
2I − hSR∇

2R − hSV∇
2V

)
=

∂S
∂t

− GS (2.18)

pI
(
hII∇

2I − hIS∇
2S − hIR∇

2R − hIV∇
2V

)
=

∂ I
∂t

− GI (2.19)

pR
(
hRR∇

2R − hRS∇
2S − hRI∇

2I − hRV∇
2V

)
=

∂R
∂t

− GR (2.20)

pV
(
hVV∇

2R − hVS∇
2S − hVI∇

2I − hVV∇
2V

)
=

∂R
∂t

− GR (2.21)

Due to the generation term on the right hand side of these four equations, generally this still is a nonlinear problem.
Accordingly, (2.18)–(2.21) are transformed into:⎡⎢⎣ pShSS∇

2
− MS − NS −pShSI∇

2
− ESI − NSI −pShSR∇

2
− ESR − NSR −pShSV∇

2
− ESV − NSV

−pIhIS∇
2
− EIS − NIS pIhII∇

2
− MI − NI −pIhIR∇

2
− EIR − NIR −pIhIV∇

2
− EIR − NIV

−pRhRS∇
2
− ERS − NRS −pRhRI∇

2
− ERI − NRI pRhRR∇

2
− MR − NR pRhRV∇

2
− ERV − NRV

−pVhVS∇
2
− EVS − NVS −pVhVI∇

2
− EVI − NVI pVhVR∇

2
− EVR − NVR pVhVV∇

2
− MV − NV

⎤⎥⎦
⎡⎢⎣S

I
R
V

⎤⎥⎦

=
∂

∂t

⎡⎢⎣S
I
R
V

⎤⎥⎦ (2.22)

where a new subscript has been added to the E coefficients, because they represent links between more than just one
population. Now defining:

[L] =

⎡⎢⎢⎢⎢⎣
QSS QSI QSR QSV
QIS QII QIR QIV
QRS QRI QRR QRV
QVS QVI QVR QVV

⎤⎥⎥⎥⎥⎦  ⎡⎢⎣ pShSS −pShSI −pShSR −pShSV
−pIhIS pIhII −pIhIR −pIhIV
−pRhRS −pRhRI pRhRR pRhRV
−pVhVS −pVhVI pVhVR pVhVR

⎤⎥⎦
  

[Q ]

∇
2
−

E  ⎡⎢⎣W1 ESI ESR ESV
EIS W2 EIR EIV
ERS ERI W3 ERV
EVS EVI EVR W4

⎤⎥⎦+

Φ  ⎡⎢⎣ NS NSI NSR NSV
NIS NI NIR NIV
NRS NRI NR NRV
NVS NVI NVR NV

⎤⎥⎦
  ⎡⎢⎣ MS + NS ESI + NSI ESR + NSR ESV + NSV

EIS + NIS MI + NI EIR + NIR EIV + NIV
ERS + NRS ERI + NRI MR + NR ERV + NRV
EVS + NVS EVI + NVI EVR + NVR MV + NV

⎤⎥⎦
  

[W ]

(2.23)

where Φ represents a nonlinear operator.

3. Numerical solution for a 2D grid

As S, I , R and V must be non negatively valued at each point of the space–time domain, the solution to this problem
cannot be treated as in the Dirichlet or Neumann formulation, because the non negativity can be regarded as a time
dependent border condition. Bearing in mind this statement, a numerical approach suits this problem better, where the
formulation given by Eq. (2.22) drives to a time stepping formulation for the spatial profile of the S, I , R and V scalar fields.
The procedure should provide a way to adjust the time step so as to limit the maximum deviation of negative values and
then to reset acceptable deviations to zero. The time stepping can be faced with a Crank–Nicolson (C–N) method, leaving
the spatial problem to other methods. Here, Finite Differences (FD) are used as a first approach.

As we saw early, Eq. (2.22) can be rewritten as:

[L] = [Q ]∇2
− [W ] − [Φ] (3.1)

F (U)
.
=

{
[Q ]∇2

− [W ] − [Φ]
}
[U] = [I]

∂

∂t
[U] (3.2)

Crank–Nicolson decomposition leads to:
1
2

([
F

([
Un+1])]

+
[
F

([
Un])])

=
1

∆t
[I]

([
Un+1]

−
[
Un]) , (3.3)
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or,

− [Q ]∇2 [
Un+1]

+

(
2

∆t
[I] + [W ]

) [
Un+1]

= [Q ]∇2 [
Un]

+

(
2

∆t
[I] − [W ]

) [
Un] (3.4)

and application of FD for square elements (∆x = ∆y) for the Laplacian Operator yields:

∇
2F ∼

1
(∆x)2

(
Fi−1,j + Fi,j−1 + Fi,j+1 + Fi+1,j − 4Fi,j

)
(3.5)

which allows us to write:

−
1

(∆x)2
[Q ]

([
Un+1
i−1,j

]
+

[
Un+1
i,j−1

]
+

[
Un+1
i,j+1

]
+

[
Un+1
i+1,j

]
− 4

[
Un+1
i,j

])
+

(
2

∆t
[I] + [W ]

) [
Un+1
i,j

]
=

1
(∆x)2

[Q ]
([
Un
i−1,j

]
+

[
Un
i,j−1

]
+

[
Un
i,j+1

]
+

[
Un
i+1,j

]
− 4

[
Un
i,j

])
+

(
2

∆t
[I] − [W ]

) [
Un
i,j

]
(3.6)

Now, by assuming that the grid to be considered has L by M square cells of side ∆x, that [U] represents a vector which
holds S, I , R and V populations, that [ILM ] the identity matrix of LM × LM dimension, and that [I2LM ] is the identity matrix
of 2LM × 2LM dimension, then the equation turns into:

(3.7)

where [S] is the matrix generated from the assembly given by the Laplacian operator,

[Z1] = v0Sx [X] + v0Sy [Y ] (3.8)

[Z2] = v0Ix [X] + v0Iy [Y ] (3.9)

[Z3] = v0Rx [X] + v0Ry [Y ] (3.10)

[Z4] = v0Vx [X] + v0Vy [Y ] (3.11)

where [X] and [Y ] are generated by using respectively the differential operators given by:
∂H
∂x

∼
1

2 (∆x)

(
Hi+1,j − Hi−1,j

)
(3.12)

∂H
∂y

∼
1

2 (∆x)

(
Hi,j+1 − Hi,j−1

)
(3.13)

Clearly, Eq. (3.7) gives a procedure to solve [U] by stepping, but in order to include a convergent solution for this
nonlinear problem, we also include a variable number of iterations at each step. Eq. (3.7) presents separately the time
and spatial evolution of the populations. Indeed, if [Qi = 0], then the system becomes the traditional SIR model, without
a spatial component.

As expected, all the terms in the matrices are constant and hopefully positive. If a negative but tolerable value, i.e. a

small enough value, appears in one of the components of the vector

⎛⎜⎝S
I
R
V

⎞⎟⎠ then that negative term must be replaced by

a zero because only positive populations are significant here. If for some element of that vector the negative value is too
large, then it is advisable to repeat the procedure for the last step with a smaller value of ∆t .

4. Simulation examples

Our first example takes the following values for the attrition or conversion processes:

[E] =

⎡⎢⎣−0.002 0.0 0.02 0.0
0.0 −0.3 0.0 0.0
0.0 0.3 −0.02 0.0

0.002 0.0 0.0 0.0

⎤⎥⎦ , [Φ (S, I)] =

⎡⎢⎣−29.7 · I 0.0 0.0 0.0
0.0 29.7 · S 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

⎤⎥⎦
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Fig. 4.1. Time evolution of a SIRS–V spatial model, (1:left) low diffusion, and (2:right) high diffusion. Dashed Green (S), Solid Red(I), Solid Blue(R)
and Dotted Blue (V).

The perception parameters are all nil except hIS = 0.1, hII = 1.0, hRI = −1.0 and hRR = −0.2 so the infected
population will move away from the susceptible population each time they have less local concentration of population
from the latter. On the other hand, the recovered population will nearly always move away from the infected ones.

We analyze two cases of proportionality constants, p(1)
i = 0.01 and p(2)

i = 11.5. (i = S, I, R, V ). We use 1400 time-steps
for a time-horizon of 70 s, on a grid of 37×25 = 925 nodes. The evolution of the total populations is rather similar except
for the fact that the susceptible population will start to grow after reaching a minimum. Other changes are also visible
when comparing both plots (see Fig. 4.1).

An explanation for the different behavior lies in the fact that diffusion makes part of the recovered population to
return near the susceptible population, thus increasing the local concentration of those forces, then increasing the size of
susceptible population whilst the infected population is no longer there, but in an outer ring surrounding the susceptible
population. Fine details can be seen for the low diffusion case (2) in Fig. 4.2, whilst the high diffusion case is shown as case
(3) in Fig. 4.2. The difference is very clear between these two cases, and we see that the recovered population tends to
quickly move away from the infected population; the rationale for this imposed behavior is that the recovered population
will eventually turn into susceptible subjects exposed to contagion (if locally they have infected neighbors).

It is important to notice that the first plot in Fig. 4.2 predicts a negligible size of infected population, from time-step
300, while the second plot forecasts a growing size of the infected population. A non-spatial model would not be able to
predict these differences.

The second example considers a population spread over a domain, where the health authority has spotted a circular
area of radius equal to 169 m that appears to contain an infected population. The health authority does not have accurate
knowledge on the real placement of the outbreaks of the epidemic or how many individual outbreaks there are. In reality
there are three outbreaks, centered at (−75 m, 75 m), (75 m, 75 m) and (−75 m, −75 m) respectively, with two having
a radius of 30 m, and the third 25 m. The origin of the coordinates is at the center of the domain.

In this context, the vaccination process occurs inside a circle of a radius of 169 m where the previously described
outbreaks are embedded. The vaccination is only for the susceptible population, so the infected and the recovered are not
vaccinated. Recovered persons do not spread until they are again susceptible.

The populations behave exactly as in the first example (hIS = 0.1, hII = 1.0, hRI = −1.0 and hRR = −0.2), but with
the following matrices:

[E] = 10−6

⎡⎢⎣−2.0 0.0 20.0 0.0
0.0 −300.0 0.0 0.0
0.0 300.0 −20.0 0.0
2.0 0.0 0.0 0.0

⎤⎥⎦ , [Φ (S, I)] = 10−6

⎡⎢⎣−29.7 · I 0.0 0.0 0.0
0.0 29.7 · S 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

⎤⎥⎦
The proportionality constants are defined by pi = 0.0115 for (i = S, I, R, V ). We consider the time evolution for 40

days by using 1400 time-steps on a spatial grid of 47 × 47 = 2209 nodes. Recovered persons not spread until they are
again susceptible.

The time evolution of individuals after the start of the epidemic with ring vaccination is shown in Fig. 4.3. At first
sight, looking the time evolution, it seems that the campaign succeeds but looking carefully, and given the bounds for
the vaccination program, it is clear that the infection will keep growing outside that region, thus the infection is defeated
inside the vaccination circle but not eradicated: actually with an initial outbreak of 1000 over a total population of 20
thousand, the model forecasts that at the second day the infected group would reduce to only 17 individuals, hinting an
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Fig. 4.2. Snapshots of the distribution of the infected population concentrations for low and high diffusion 1: Baseline case, 2: Low diffusion case,
3: High diffusion case. (Lighter shade implies higher concentration).
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Fig. 4.3. Snapshots of the distribution of the population concentrations with a restricted area of vaccination. Dashed Green (S), Solid Red(I), Solid
Blue(R) and Dotted Blue (V). Each step is 246 [s]. A zoom of the left corner of the first figure is presented in the figure below it.

erroneous success, because from that day the infected group will grow quite steadily reaching the figure of 173 by day
40.

The spatial distributions of infected at three points over the 40-day simulation are shown in Fig. 4.4. In the contour
plot, lighter shades mean higher concentrations, show that the rejection of the susceptible group makes the speed of
diffusion of the infected subjects high enough to escape off the vaccination circle. Regarding this, it could have been
wiser to increase the vaccination rate near the circle border or to increase the radius of the vaccination circle. Notice
that one part of the small group of infected population managed to stay in the circle, perhaps due to the displacement of
the susceptible population to safer places between the pocket of infected population and the outer ring of the unhealthy
group. The other groups of infected population have disappeared from within the circle, mainly because their introspective
attitude depended on their higher concentration which reduced their escaping attitude, making them more exposed to
vaccination, while keeping the susceptible population less keen on running away.

5. Conclusions

The spatial considerations in the definition of vaccination policies have proven to be vital to eradicate several
epidemics. Despite of this, there are scarce research efforts in this direction. In this paper, we present a first model
that allows us to model different spatial vaccination policies such as the ring vaccination policy. In particular, we
propose a spatial deterministic SIRS–V model, formed by a non-linear system of partial differential equations with explicit
attrition and diffusion terms for the vaccination process. The model is very flexible to simulate different locations and
population densities and their diffusion, and hence to measure the effectiveness of spatial vaccination policies, a crucial
and contemporary matter given the scarcity of resources and the velocity required for health authorities to eradicate
epidemics with fast spreading.

Our first example forecasts deviations when using different diffusion values (i.e. comparing what happens with the
recovered population at 400 time-steps, the vaccinated population at 600 hundred time-steps and the infected population
after 400 time-steps), as the diffusive model is more realistic than the traditional time-dependent models for this simple
stance, with more complex boundary conditions, the differences should be even more relevant.

In our second example, we see that a larger local imbalance of infected population can result in quick runaways to
places where vaccination is not covered, resulting in a new source for spreading the disease, thus causing more toil and
eventually increasing costs. This model, applied to vaccination campaigns can be used to simulate different vaccination
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Fig. 4.4. Snapshots of the distribution of the infected population concentrations with a restricted area of vaccination. (Lighter shade implies higher
concentration.)
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coverages in order to succeed in reducing the population-time infection. It must be stressed that the traditional purely
time-dependent model is not useful for dealing with these space–time evolution of SIRS–V problems.

In the near future, we expect to refine the model by considering more complex attitude descriptions including
remote effects while, in terms of attrition, the model requires to include non-linear terms for the exchange rates. Other
enhancements to this model should consider death rates, specially for long term or chronic diseases, and could include
age segmentation for each of the groups. As the model is expanded, more resources will be needed, including parallel
processing to obtain results in reasonable times. An even better model would make the circle a remote attractor for the
susceptible population outside the circle.

The results shown here encourage further research in order to decide on the best strategy to efficiently cope with an
epidemic outbreak. With proper care of the stabilization problems, this spatial modeling of epidemics can be useful for
cases where birth/death take place or when mobile infected population can create a variable outbreak of a disease.
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